A BDNF-Mediated Push-Pull Plasticity Mechanism for Synaptic Clustering
Author(s) -
Dragoş Niculescu,
Kristin MichaelsenPreusse,
Ülkü Güner,
René van Dorland,
Corette J. Wierenga,
Christian Löhmann
Publication year - 2018
Publication title -
cell reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.264
H-Index - 154
eISSN - 2639-1856
pISSN - 2211-1247
DOI - 10.1016/j.celrep.2018.07.073
Subject(s) - tropomyosin receptor kinase b , synaptic plasticity , neuroscience , neurotransmission , metaplasticity , synaptic fatigue , brain derived neurotrophic factor , postsynaptic potential , neuroplasticity , synaptic augmentation , nonsynaptic plasticity , biology , neurotrophic factors , excitatory postsynaptic potential , receptor , inhibitory postsynaptic potential , biochemistry
During development, activity-dependent synaptic plasticity refines neuronal networks with high precision. For example, spontaneous activity helps sorting synaptic inputs with similar activity patterns into clusters to enhance neuronal computations in the mature brain. Here, we show that TrkB activation and postsynaptic brain-derived neurotrophic factor (BDNF) are required for synaptic clustering in developing hippocampal neurons. Moreover, BDNF and TrkB modulate transmission at synapses depending on their clustering state, indicating that endogenous BDNF/TrkB signaling stabilizes locally synchronized synapses. Together with our previous data on proBDNF/p75 NTR signaling, these findings suggest a push-pull plasticity mechanism for synaptic clustering: BDNF stabilizes clustered synapses while proBDNF downregulates out-of-sync synapses. This idea is supported by our observation that synaptic clustering requires matrix-metalloproteinase-9 activity, a proBDNF-to-BDNF converting enzyme. Finally, NMDA receptor activation mediates out-of-sync depression upstream of proBDNF signaling. Together, these data delineate an efficient plasticity mechanism where proBDNF and mature BDNF establish synaptic clustering through antagonistic modulation of synaptic transmission.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom