z-logo
open-access-imgOpen Access
Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro
Author(s) -
Azevedo Rita I.,
Minskaia Ekaterina,
FernandesPlatzgummer Ana,
Vieira Ana I. S.,
da Silva Cláudia L.,
Cabral Joaquim M. S.,
Lacerda João F.
Publication year - 2020
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.3185
Subject(s) - mesenchymal stem cell , biology , foxp3 , immunology , population , stromal cell , immune system , immune tolerance , bone marrow , in vitro , microbiology and biotechnology , cancer research , medicine , genetics , environmental health
Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow‐derived MSCs expanded under xenogeneic‐free conditions. Our data show an increase in the counts and frequency of CD4 + CD25 high Foxp3 + CD127 low Treg cells (4‐ and 6‐fold, respectively) after a 14‐day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg‐like phenotype proliferate. These MSC‐induced Treg‐like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC‐induced Treg‐like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD‐1 is higher in Treg‐like cells than in Tcon, whereas the frequency of PDL‐1 increases in MSCs after coculture. TGF‐β levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg‐like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF‐β and/or PD‐1/PDL‐1 expression. This MSC‐induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here