
Origin‐Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion
Author(s) -
Sheriff Lozan,
Alanazi Asma,
Ward Lewis S. C.,
Ward Carl,
Munir Hafsa,
Rayes Julie,
Alassiri Mohammed,
Watson Steve P.,
Newsome Phil N.,
Rainger G. E.,
Kalia Neena,
Frampton Jon,
McGettrick Helen M.,
Nash Gerard B.
Publication year - 2018
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.2811
Subject(s) - platelet , fibronectin , mesenchymal stem cell , biology , podoplanin , platelet activation , microbiology and biotechnology , immunology , platelet adhesiveness , extracellular matrix , immunohistochemistry , platelet aggregation
We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC‐2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC‐2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC‐2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin‐induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. S tem C ells 2018;36:1062–1074