Open Access
Charge transport and structure in semimetallic polymers
Author(s) -
Rudd Sam,
FrancoGonzalez Juan F.,
Kumar Singh Sandeep,
Ullah Khan Zia,
Crispin Xavier,
Andreasen Jens W.,
Zozoulenko Igor,
Evans Drew
Publication year - 2018
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24530
Subject(s) - pedot:pss , doping , polymer , conductive polymer , materials science , chemical physics , scattering , conductivity , ion , fabrication , charge carrier , polymer chemistry , nanotechnology , chemistry , optoelectronics , physics , organic chemistry , composite material , optics , medicine , alternative medicine , pathology
ABSTRACT Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low‐cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi‐metallic conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm 2 /Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X‐ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer‐based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56 , 97–104