Premium
Free‐breathing motion‐informed locally low‐rank quantitative 3D myocardial perfusion imaging
Author(s) -
Hoh Tobias,
Vishnevskiy Valery,
Polacin Malgorzata,
Manka Robert,
Fuetterer Maximilian,
Kozerke Sebastian
Publication year - 2022
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.29295
Subject(s) - undersampling , breathing , nuclear medicine , wavelet , mathematics , perfusion , computer science , artificial intelligence , medicine , cardiology , anatomy
Purpose To propose respiratory motion‐informed locally low‐rank reconstruction (MI‐LLR) for robust free‐breathing single‐bolus quantitative 3D myocardial perfusion CMR imaging. Simulation and in‐vivo results are compared to locally low‐rank (LLR) and compressed sensing reconstructions (CS) for reference. Methods Data were acquired using a 3D Cartesian pseudo‐spiral in‐out k‐t undersampling scheme ( R = 10) and reconstructed using MI‐LLR, which encompasses two stages. In the first stage, approximate displacement fields are derived from an initial LLR reconstruction to feed a motion‐compensated reference system to a second reconstruction stage, which reduces the rank of the inverse problem. For comparison, data were also reconstructed with LLR and frame‐by‐frame CS using wavelets as sparsifying transform (ℓ 1 $$ {\ell}_1 $$ ‐wavelet). Reconstruction accuracy relative to ground truth was assessed using synthetic data for realistic ranges of breathing motion, heart rates, and SNRs. In‐vivo experiments were conducted in healthy subjects at rest and during adenosine stress. Myocardial blood flow (MBF) maps were derived using a Fermi model. Results Improved uniformity of MBF maps with reduced local variations was achieved with MI‐LLR. For rest and stress, intra‐volunteer variation of absolute and relative MBF was lower in MI‐LLR (±0.17 mL/g/min [26%] and ±1.07 mL/g/min [33%]) versus LLR (±0.19 mL/g/min [28%] and ±1.22 mL/g/min [36%]) and versusℓ 1 $$ {\ell}_1 $$ ‐wavelet (±1.17 mL/g/min [113%] and ±6.87 mL/g/min [115%]). At rest, intra‐subject MBF variation was reduced significantly with MI‐LLR. Conclusion The combination of pseudo‐spiral Cartesian undersampling and dual‐stage MI‐LLR reconstruction improves free‐breathing quantitative 3D myocardial perfusion CMR imaging under rest and stress condition.