Open Access
Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors
Author(s) -
Jiadong Li,
Jue Cheng,
Bingkui Miao,
Xiaowei Wei,
Zhiqiang Zhang,
Haiwen Li,
Dongmin Wu
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.070204
Subject(s) - high electron mobility transistor , biosensor , biomolecule , materials science , optoelectronics , transistor , electron mobility , millimeter , monolayer , nanotechnology , electrical engineering , optics , physics , engineering , voltage
In order to enhance the performance of AlGaN/GaN high electron mobility transistor (HEMT) biosensor, millimeter grade AlGaN/GaN HEMT structure have been designed and successfully fabricated. Factors influencing the capability of the AlGaN/GaN HEMT biosensor are analyzed. UV/ozone is used to oxidize GaN surface and then 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer can be bound to the sensing region. This serves as a binding layer in the attachment of prostate specific antibody (anti-PSA) for prostate specific antigen detection. The millimeter grade biomolecule-gated GaN/AlGaN HEMT sensor shows a quick response when the target prostate specific antigen in a buffer solution is added to the antibody-immobilized sensing area. The detection capability of this biomolecule-gate sensor estimated to be below 0.1 pg/ml level using a 21.5 mm2 sensing area, which is the best result of GaN/AlGaN HEMT biosensor for PSA detection till now. The electrical result of the biomolecule-gated GaN/AlGaN HEMT biosensor suggests that this biosensor might be a useful tool for the prostate cancer screening.