Correction of Geometric Influence in Permittivity Determination
Author(s) -
Xiangdong Xu,
Tord Bengtsson,
Jörgen Blennow,
Stanislaw Gubanski
Publication year - 2018
Publication title -
proceedings of the nordic insulation symposium
Language(s) - English
Resource type - Journals
ISSN - 2535-3969
DOI - 10.5324/nordis.v0i23.2459
Subject(s) - permittivity , electrode , relative permittivity , finite element method , materials science , dielectric , voltage , acoustics , electrical engineering , physics , engineering , optoelectronics , structural engineering , quantum mechanics
Determination of relative permittivity of dielectric materials is generally done with a rather low accuracy, in the order of several percent. This is in a sharp contrast to the accuracy of measurements of the dissipation factor, both usually being determined in the same measurement. A common understanding for the inferior accuracy in permittivity measurements is the effects of electrode edges. However, further studies indicate that geometric effects, arising from electrode shielding box, guard ring, electrode supporting materials, etc., also influence the accuracy significantly if the responding voltage present at the measuring electrode is non-negligible. With help of the Finite Element Method (FEM), geometric correction factors are estimated from an electrode model to increase the accuracy. This study is specially focused on the application of contact-free electrode arrangement using the air reference method. In this paper, a few examples of how geometric influences affect results are presented as well as a comparison of experimental results. From these insights, we discuss how to minimize and compensate the geometric effects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom