Open Access
Methanol extract of Aruncus dioicus exerts antidiabetic effect via PCSK9/LDLR pathway
Author(s) -
Li Gong,
Qing Yang,
Huang Yinluan,
Shaoyan Xie,
Chao Zeng,
Yuzhou Liu
Publication year - 2021
Publication title -
tropical journal of pharmaceutical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.209
H-Index - 36
eISSN - 1596-5996
pISSN - 1596-9827
DOI - 10.4314/tjpr.v18i3.18
Subject(s) - pcsk9 , medicine , endocrinology , kexin , ldl receptor , glucokinase , low density lipoprotein , glycogen , cholesterol , chemistry , lipoprotein , diabetes mellitus
Purpose: To investigate the antidiabetic effect of methanol extract of Aruncus dioicus, and the underlying mechanism(s).
Methods: Twenty-four adult female albino mice were randomly assigned to four groups of six mice each: normal control group, diabetic control group and two treatment groups. With the exception of normal control group, the diabetic control and treatment groups consisted of leptin receptor-deficient (db/db) type 2 diabetic mice. The diabetic control group was not treated, while the treatment groups received 200 or 400 mg/kg extract/day orally for 4 weeks. The effect of the extract on fasting blood glucose (FBG), proprotein convertase subtilisin/kexin type 9 (PCSK9), glycogen and lipid profiles were determined. The expressions of PCSK9, low-density lipoprotein receptor (LDL-R) and glucokinase (GCK) were determined in liver tissues using western blotting and real-time quantitative polymerase chain reaction (qRT-PCR).
Results: Fasting blood glucose (FBG) was significantly and dose-dependently reduced in the treatment groups, relative to diabetic control group at different time-points (p < 0.05). Total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were significantly higher in the diabetic control group than in normal control group (p < 0.05). However, treatment with methanol extract of A. dioicus significantly and dose-dependently reversed the changes in the levels of these parameters (p < 0.05). The expressions of LDLR and GCK were significantly down-regulated in diabetic control group, when compared with normal control group, but their expressions were significantly dose-dependently upregulated in the treatment groups (p < 0.05). Treatment with the extract significantly and dose-dependently down-regulated PCSK9 expression (p < 0.05). Liver injury characterized by large distended lipid droplets and fat accumulation was seen in diabetic mice, but treatment with methanol extract of A. dioicus significantly reversed the histopathological changes induced by DM.
Conclusion: These results indicate that the antidiabetic effect of methanol extract of A. dioicus is exerted via a mechanism involving PCSK9/LDLR pathway.