Open Access
Molecular pathways of liver regeneration: A comprehensive review
Author(s) -
Yana V. Kiseleva,
Sevak Z Antonyan,
Tatyana S Zharikova,
К. А. Тупикин,
D. V. Kalinin,
Yuri Olegovich Zharikov
Publication year - 2021
Publication title -
world journal of hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 55
ISSN - 1948-5182
DOI - 10.4254/wjh.v13.i3.270
Subject(s) - medicine , regeneration (biology) , liver regeneration , bioinformatics , computational biology , microbiology and biotechnology , biology
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.