z-logo
open-access-imgOpen Access
EFFECT OF THERMAL PRETREATMENT ON THE SOLUBILIZATION OF ORGANIC MATTERS IN A MIXTURE OF PRIMARY AND WASTE ACTIVATED SLUDGE
Author(s) -
Ahmed Aboulfotoh,
E.H. El Gohary and O.D. El Monayeri
Publication year - 2015
Publication title -
journal of urban and environmental engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.187
H-Index - 13
ISSN - 1982-3932
DOI - 10.4090/juee.2015.v9n1.82-88
Subject(s) - anaerobic digestion , biogas , chemistry , activated sludge , solubilization , pulp and paper industry , anaerobic exercise , sewage sludge , fraction (chemistry) , waste management , digestion (alchemy) , biodegradable waste , sewage treatment , chromatography , methane , organic chemistry , biochemistry , biology , physiology , engineering
The increased demand for advanced techniques in anaerobic digestion over the last few years has led to the employment of various pre-treatment methods prior to anaerobic digestion to increase gas production. These pre-treatment methods alter the physical and chemical properties of sludge in order to make it more readily degradable by anaerobic digestion. Although the thermal pre-treatment presents high energy consumption, the main part of this energy to heat can be recovered from the biogas produced in the anaerobic process. In this research a mixture of primary and waste activated sludge was thermally pretreated at 100, 125, 150, 175 and 200o C in order to determine the effect of thermal pretreatment on improving the solubilization of sludge by increasing the soluble organic fraction (expressed as soluble COD and VFA). Experimental results proved that the solubilization ratio of sludge is depends on the treatment time and the applied temperature and the optimal temperature ranged between 175 and 200o C. The COD solubilization ratio (at 175o C) increased from 11.2% to 15.1% and 25.1% when the time of treatment increased from 60 min to 120 and 240 min respectively. The experimental data could be fitted to obtain an empirical model (Known as the enzyme-kinetic equation) relating the COD solubilization ratio of sludge and VFA concentration to the applied temperature and the heating time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom