z-logo
open-access-imgOpen Access
Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy
Author(s) -
Taeyong Lee,
Adrianne L. Jenner,
Peter Kim,
Jeehyun Lee
Publication year - 2020
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2020126
Subject(s) - oncolytic virus , virotherapy , immune system , virus , infectivity , virology , biology , cancer research , immunology
Oncolytic virotherapy is a promising cancer treatment that harnesses the power of viruses. Through genetic engineering, these viruses are cultivated to infect and destroy cancer cells. While this therapy has shown success in a range of clinical trials, an open problem in the field is to determine more effective perturbations of these viruses. In this work, we use a controlled therapy approach to determine the optimal treatment protocol for a delayed infection from an immune-evading, coated virus. We derive a system of partial differential equations to model the interaction between a growing tumour and this coated oncolytic virus. Using this system, we show that viruses with inhibited viral clearance and infectivity are more effective than uncoated viruses. We then consider a hierarchical level of coating that degrades over time and determine a nontrivial initial distribution of coating levels needed to produce the lowest tumour volume. Interestingly, we find that a bimodal mixture of thickly coated and thinly coated virus is necessary to achieve a minimum tumour size. Throughout this article we also consider the effects of immune clearance of the virus. We show how different immune responses instigate significantly different treatment outcomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom