Open Access
Reflexive edge strength of convex polytopes and corona product of cycle with path
Author(s) -
Kooi-Kuan Yoong,
Roslan Hasni,
Gee-Choon Lau,
Muhammad Ahsan Asim,
Ali Ahmad
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
ISSN - 2473-6988
DOI - 10.3934/math.2022657
Subject(s) - combinatorics , mathematics , polytope , regular polygon , product (mathematics) , graph , vertex (graph theory) , path (computing) , geometry , computer science , programming language
For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an edge irregular reflexive $ k $-labeling of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a reflexive edge strength of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.