Open Access
MicroRNA‑154/ADAM9 axis inhibits the proliferation, migration and invasion of breast cancer cells
Author(s) -
Chengwei Qin,
Yanming Zhao,
Chao Gong,
Zhenlin Yang
Publication year - 2017
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2017.7021
Subject(s) - oncogene , microrna , cancer , cell cycle , molecular medicine , cancer research , breast cancer , biology , gene , genetics
Breast cancer is the leading cause for cancer-associated mortality in women. Although great progress has been made in the earlier diagnosis and systemic therapy of patients with breast cancer in recent years, recurrence or distant metastasis continue to present major barriers to the successful treatment of breast cancer. Therefore, fully understanding the molecular mechanisms underlying the progression of breast cancer may be critical for the development of effective therapeutic strategies against breast cancer. The aim of the present study was to explore the expression, function and molecular mechanisms of microRNA-154 (miR-154) in human breast cancer. It was demonstrated that miR-154 was significantly downregulated in breast cancer tissue and cell lines. The restoration of miR-154 expression suppressed the proliferation, migration and invasion of breast cancer cells. ADAM metallopeptidase domain 9 (ADAM9) was identified as a novel direct target for miR-154 in breast cancer. It was demonstrated that miR-154 acted as a tumor suppressor in breast cancer by targeting ADAM9. The results of the present study suggest that the restoration of miR-154 expression may be an effective therapeutic strategy for the treatment of breast cancer in the future.