z-logo
open-access-imgOpen Access
Mathematical Driving Model of Three Phase, Two Level Inverter by (Method of Interconnected Subsystem)
Author(s) -
Mohammed Ali
Publication year - 2017
Publication title -
iraqi journal for electrical and electronic engineering
Language(s) - English
Resource type - Journals
eISSN - 2078-6069
pISSN - 1814-5892
DOI - 10.37917/ijeee.13.1.10
Subject(s) - power factor , harmonics , total harmonic distortion , inverter , power (physics) , distortion (music) , harmonic , ac power , three phase , electrical engineering , voltage , control theory (sociology) , capacitor , electronic engineering , engineering , computer science , physics , acoustics , control (management) , amplifier , cmos , quantum mechanics , artificial intelligence
In this paper describe to mathematical analysis for a three-phase, two level inverter designs. As we know the power electronic devices (inverter) to convert the DC power to AC power (controller on output voltage and frequency level). In Industrial applications, the inverters are used for adjustable speed (AC Drives). In this paper, the mathematical analyses for inverter design are done by using Software packages C++ Builder and visual C++Language. For non- linear distortions described by the load power factor in power system networks. The P.F is reverse proportional with the harmonics distortion. Small P.F means much more of harmonic distortion, and lower power quality for consumers. to improve the P.F, and power quality in this paper the small capacitor installed as part of the rectified the load current has power (30 KW with P.F load 0.8), the fluctuations of the rectified voltage must not greater than +/- 10%.The power factor proportion of the load power, with Modulation coefficient p.u approximately unity. The calculation is achieved with different integrations steps with load power 30KW, 0.8 P.F. all results done Based on model and experimental data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom