The Outcome of Turning Factors on the Machining Characteristics While Turning 655M13 Steel Alloy using Tialn Coated Carbide Insert
Author(s) -
P. H. J. Venkatesh,
K. Chidambaram,
Milon Selvam Dennison
Publication year - 2020
Publication title -
international journal of engineering and advanced technology
Language(s) - English
Resource type - Journals
ISSN - 2249-8958
DOI - 10.35940/ijeat.c5416.029320
Subject(s) - surface roughness , materials science , machining , carbide , titanium alloy , metallurgy , mechanical engineering , thrust , surface finish , radius , alloy , composite material , engineering , computer science , computer security
This exploration is carried out to reveal the outcome of turning factors such as cutting velocity, depth of cut and feed rate on the surface roughness, mean cutting force and tool-work interface temperature on turning cylindrical 655M13 steel alloy components. The experiments are designed based on (33) full factorial design and conducted on a turning centre with Titanium Aluminium Nitride (TiAlN) layered carbide tool of 0.8mm nose radius, simultaneously cutting forces such as feed force, thrust force and tangential force and the tool-work interface temperature are observed using calibrated devices. The surface roughness of the turned steel alloy parts is deliberated by means of a precise surface roughness apparatus. Prediction models are created for average surface roughness, mean cutting force and tool-work interface temperature by nonlinear regression examination with the aid of MINITAB numerical software. The optimum machining conditions are confirmed with the aid of a Genetic Algorithm. The outcome of each turning factor on the surface roughness, mean cutting force and tool-work interface temperature is studied and presented accordingly.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom