Open Access
The post-hematopoietic cell transplantation microbiome: relationships with transplant outcome and potential therapeutic targets
Author(s) -
Yannouck F. van Lier,
Marcel R.M. van den Brink,
Mette D. Hazenberg,
Kate A. Markey
Publication year - 2021
Publication title -
haematologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.782
H-Index - 142
eISSN - 1592-8721
pISSN - 0390-6078
DOI - 10.3324/haematol.2020.270835
Subject(s) - transplantation , microbiome , antibiotics , dysbiosis , bacteremia , hematopoietic stem cell transplantation , hematopoietic cell , immunology , medicine , disease , gut flora , biology , haematopoiesis , stem cell , bioinformatics , microbiology and biotechnology , genetics
Microbiota injury occurs in many patients undergoing allogeneic hematopoietic cell transplantation, likely as a consequence of conditioning regimens involving chemo- and radiotherapy, the widespread use of both prophylactic and therapeutic antibiotics, and profound dietary changes during the peri-transplant period. Peri-transplant dysbiosis is characterized by a decrease in bacterial diversity, loss of commensal bacteria and single-taxon domination (e.g., with Enterococcal strains). Clinically, deviation of the post-transplant microbiota from a normal, high-diversity, healthy state has been associated with increased risk of bacteremia, development of graft-versus-host disease and decreases in overall survival. A number of recent clinical trials have attempted to target the microbiota in allogeneic hematopoietic cell transplantation patients via dietary interventions, selection of therapeutic antibiotics, administration of pre- or pro-biotics, or by performing fecal microbiota transplantation. These strategies have yielded promising results but the mechanisms by which these interventions influence transplant-related complications remain largely unknown. In this review we summarize the current approaches to targeting the microbiota, discuss potential underlying mechanisms and highlight the key outstanding areas that require further investigation in order to advance microbiota- targeting therapies.