z-logo
open-access-imgOpen Access
Fake and Real News detection Using Python
Author(s) -
Fakhra Akhtar,
Fayaz Ahmad Khan,
Muḥammad Ḥanīf
Publication year - 2020
Publication title -
international journal of scientific research in science and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-602X
pISSN - 2395-6011
DOI - 10.32628/ijsrst207376
Subject(s) - false positive paradox , hatred , mainstream , fake news , python (programming language) , social media , computer science , newspaper , recall , politics , internet privacy , psychology , media studies , sociology , political science , world wide web , artificial intelligence , law , cognitive psychology , operating system
In the digital age, fake news has become a well-known phenomenon. The spread of false evidence is often used to confuse mainstream media and political opponents, and can lead to social media wars, hatred arguments and debates.Fake news is blurring the distinction between real and false information, and is often spread on social media resulting in negative views and opinions. Earlier Research describe the fact that false propaganda is used to create false stories on mainstream media in order to cause a revolt and tension among the masses The digital rights foundation DRF report, which builds on the experiences of 152 journalists and activists in Pakistan, presents that more than 88 % of the participants find social media platforms as the worst source for information, with Facebook being the absolute worst. The dataset used in this paper relates to Real and fake news detection. The objective of this paper is to determine the Accuracy , precision , of the entire dataset .The results are visualized in the form of graphs and the analysis was done using python. The results showed the fact that the dataset holds 95% of the accuracy. The number of actual predicted cases were 296. Results of this paper reveals that The accuracy of the model dataset is 95.26 % the precision results 95.79 % whereas recall and F-Measure shows 94.56% and 95.17% accuracy respectively.Whereas in predicted models there are 296 positive attributes , 308 negative attributes 17 false positives and 13 false negatives. This research recommends that authenticity of news should be analysed first instead of drafting an opinion, sharing fake news or false information is considered unethical journalists and news consumers both should act responsibly while sharing any news.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here