Open Access
Design and Execution of Turdas Tunnel
Author(s) -
Flaviu Ioan Nică,
Teodor Iftimie
Publication year - 2019
Publication title -
romanian journal of transport infrastructure
Language(s) - English
Resource type - Journals
ISSN - 2286-2218
DOI - 10.2478/rjti-2019-0010
Subject(s) - overburden , silt , geotechnical engineering , geology , section (typography) , alluvium , civil engineering , engineering , computer science , geomorphology , operating system
The paper presents aspects of the design and execution of the Turdas tunnel located on the local variant (route), on the Coşlariu - Simeria section, from the rehabilitation project of Brasov – Simeria railway line, component part of Pan European Railway Corridor IV, for train circulation with maximum speed of 160km/h. The tunnel crosses through alluvial deposits with silt and clay with locally sand layers at the upper part, sand and gravel with water in the middle part and marly silty clay and neogenic marl, with swelling phenomena, at the lower part. The overburden is between 2.00m and 13.00m. The initial project provided execution in underground, on 510.00m in the central area and from surface at both ends, 225.00m at the entrance and 45.00m at the exit. The new optimized project, based on new geological and geotechnical studies, proposed an execution from surface for the entire length of the tunnel. To establish the optimal solution two methods of surface execution and structural solutions were analyzed comparatively: “Cut and Cover” and “Cover and Cut”. The adopted method was “Cut and Cover”, with a structural solution composed of a temporary retaining structure – diaphragm walls with a special internal lining. This has been divided in six sections with different behavioral types, taking into account the ground configuration in longitudinal profile and the geological and geotechnical data. The technological execution phases are presented in detail. To investigate the behavior of this type of structure under soil and swelling actions, three-dimensional finite element analyses were carried out, taking into account the execution phases for each cross section. A monitoring system was provided to verify the stresses in the temporary retaining structure and the internal lining and also to calibrate future calculations.