Open Access
Geochemistry and origin of plagiogranites from the Eldivan Ophiolite, Çankırı (Central Anatolia, Turkey)
Author(s) -
Tijen Üner,
Üner Çakir,
Yavuz Özdemir,
Irem Arat
Publication year - 2014
Publication title -
geologica carpathica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.702
H-Index - 40
eISSN - 1336-8052
pISSN - 1335-0552
DOI - 10.2478/geoca-2014-0013
Subject(s) - geology , ophiolite , geochemistry , lile , partial melting , gabbro , tectonite , fractional crystallization (geology) , metamorphism , petrology , basalt , tectonics , paleontology , shear zone
The Eldivan Ophiolite, exposed around Ankara and Çankırı cities, is located at the central part of the Izmir-Ankara-Erzincan Suture Zone (IAESZ). It represents fragments of the Neotethyan Oceanic Lithosphere emplaced towards the south over the Gondwanian continent during the Albian time. It forms nearly complete series by including tectonites (harzburgites and rare dunites), cumulates (dunites, wherlites, pyroxenites, gabbro and plagiogranites) and sheeted dykes from bottom to top. Imbricated slices of volcanic-sedimentary series and discontinuous tectonic slices of ophiolitic metamorphic rocks are located at the base of tectonites. Plagiogranitic rocks of the Eldivan Ophiolite are mainly exposed at upper levels of cumulates. They are in the form of conformable layers within layered diorites and also dikes with variable thicknesses. Plagiogranites have granular texture and are mainly composed of quartz and plagioclases. The occurrences of chlorite and epidote revealed that these rocks underwent a low grade metamorphism. Eldivan plagiogranites have high SiO2 content (70-75 %) and low K2O content (0.5-1 %) and display flat patterns of REE with variable negative Eu anomalies. LREE/HREE ratio of these rocks varies between 0.2-0.99. All members of the Eldivan rocks have high LILE/HFSE ratios with depletion of Nb, Ti and P similar to subduction related tectonic settings. Geochemical modelling indicates that the Eldivan plagiogranites could have been generated by 50-90 % fractional crystallization and/or 5-25 % partial melting of a hydrous basaltic magm