Open Access
Some Tauberian theorems for Cesàro summability of double integrals over R2+
Author(s) -
İbrahi̇m Çanak,
İbrahi̇m Çanak
Publication year - 2021
Publication title -
filomat
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 34
eISSN - 2406-0933
pISSN - 0354-5180
DOI - 10.2298/fil2115279f
Subject(s) - mathematics , abelian and tauberian theorems , integrable system , multiple integral , pure mathematics , convergence (economics) , mathematical analysis , economics , economic growth
In this paper, we obtain one-sided and two-sided Tauberian conditions of Landau and Hardy types for (C,1,0) and (C,0,1) summability methods for improper double integrals under which convergence of improper double integrals follows from (C,1,0) and (C,0,1) summability of improper double integrals. We give similar results for (C,1,1) summability method of improper double integrals. In general, we obtain Tauberian conditions in terms of the concepts of slowly decreasing (resp. oscillating) and strong slowly decreasing (resp. oscillating) functions in different senses for Ces?ro summability methods of real or complex-valued locally integrable functions on [0,?) x [0,?) in different senses.