Open Access
Molecular Docking Study on the Effect on Lamin –B1 through Compounds for the Treatment of Multiple Sclerosis
Author(s) -
Sachin Kumar Verma
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.36121
Subject(s) - multiple sclerosis , lamin , docking (animal) , nuclear lamina , drug discovery , neuroscience , blindness , weakness , drug , disease , computational biology , spinal cord , bioinformatics , medicine , chemistry , pharmacology , biology , gene , anatomy , pathology , biochemistry , nuclear protein , immunology , nucleus , nursing , transcription factor , optometry
Multiple sclerosis (MS) is a demyelinating disease that can disrupt or damage various parts of our body i.e. nerve cells, brain and spinal cord, etc. The damaged cells of the body can disrupt the ability of the the nervous system to transmit signals for the functioning of the body. MS may result in double vision, blindness in one eye, muscle weakness and trouble with coordination and sensation. This disease is a long-term disease that may not be cured rapidly and easily. MS may be found at an age of 20-50. Lamin B1 is a protein that is found in humans. A gene i.e LMB1 encodes for this protein. The nuclear lamina consists of a 2D matrix of protein which locates next to the inner nuclear membrane. Molecular docking is a virtual or e tool that promotes the drug designing technique in a computerized way or called computer-assisted Drug Designing [CADD]. This can be used to complete the goal of docking is to see the binding of the protein and ligands In our study, one of the naturally occurring products was used for Multiple sclerosis treatment i.e Quercetin . The Quercetin ligand molecule gives a promising way of making the drug against the Multiple Sclerosis disease. According to this study, Quercetin may be used as a drug agent against Multiple Sclerosis disease in the future.