Hourly water demand forecasting using a hybrid model based on mind evolutionary algorithm
Author(s) -
Haidong Huang,
Zhixiong Zhang,
Zhenliang Lin,
Shitong Liu
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.228
Subject(s) - genetic algorithm , computer science , artificial neural network , stability (learning theory) , demand forecasting , evolutionary algorithm , time series , machine learning , artificial intelligence , data mining , algorithm , engineering , operations research
A hybrid model based on the mind evolutionary algorithm is proposed to predict hourly water demand. In the hybrid model, hourly water demand data are first reconstructed to generate appropriate samples so as to represent the characteristics of time series effectively. Then, the mind evolutionary algorithm is integrated into a back propagation neural network (BPNN) to improve prediction performance. To investigate the application potential of the proposed model in hourly water demand forecasting, real hourly water demand data were applied to evaluate its prediction performance. In addition, the performance of the proposed model was compared with a traditional BPNN model and another hybrid model where the genetic algorithm (GA) is used as an optimization algorithm for BPNN. The results show that the proposed model has a satisfactory prediction performance in hourly water demand forecasting. On the whole, the proposed model outperforms all other models involved in the comparisons in both prediction accuracy and stability. These findings suggest that the proposed model can be a novel and effective tool for hourly water demand forecasting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom