z-logo
open-access-imgOpen Access
THE INFLUENCE OF SINGLY CHARGED IONS ON THE TRANSLATIONAL MOTION OF MOLECULES IN EXTREMELY DILUTE AMIDE SOLUTIONS
Author(s) -
V.I. Bulavin,
Ivan V’unik,
A. A. Kramarenko,
A. P. Rusinov
Publication year - 2021
Publication title -
vestnik nacionalʹnogo tehničeskogo universiteta "hpi". himiâ, himičeskaâ tehnologiâ i èkologiâ/vìsnik nacìonalʹnogo tehnìčnogo unìversitetu "hpì". serìâ: himiâ, himični tehnologiï ta ekologiâ
Language(s) - English
Resource type - Journals
eISSN - 2708-5252
pISSN - 2079-0821
DOI - 10.20998/2079-0821.2021.02.12
Subject(s) - solvation , chemistry , ion , amide , intermolecular force , molecule , formamide , solvent , crystallography , computational chemistry , organic chemistry
The type of short range solvation of Li+, Na+ K+, Rb+, Cs+, NH4+, Cl– , Br–, I–, ClO4– ions has been determined and analyzed in formamide (FA), N-methylformamide (MFA), N-dimethylformamide (DMF) at 298.15 K. In order to determine the type of ion solvation we used familiar-variable quantitative parameter (– ri), where  is the translational displacement length of ion, ri is its structural radius. It was found that the difference (– ri) is equal to the coefficient of attraction friction (CAF) of ions normalized to the solvent viscosity and hydrodynamic coefficient. The sign of the CAF is determined by the sign of the algebraic sum of its ion-molecular and intermolecular components. In amide solutions the studied cations are cosmotropes (positively solvated ((– ri) > 0), structure-making ions) and anions are chaotropes (negatively solvated ((– ri) < 0 ), structure-breaking ions). In the amide series, regardless of the sign (– ri), the near-solvation enhances, which can be explained by the weakening of the specific interaction between the solvent molecules. The decrease of  and respectively (– ri)  with increasing cation radius in a given solvent is the result of weakening of its coordinating force due to the decrease of charge density in the series Li+–Na+–K+–Rb+–Cs+. The increase of  (and (– ri), correspondingly) for the ions studied in the series FA- MFA-DMF can be explained by the weakening of intermolecular interactions in this series, which leads to the strengthening of solvation. It was found that for the halide ions in the series FA-MFA-DMF the regular growth of  parameter is explained by the weakening of the solvent structure. It was shown that Li+ ion with the lowest diffusion coefficient among cations and the highest  value forms kinetically stable complexes in amide solutions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here