z-logo
open-access-imgOpen Access
HOCH2CH2NH2 – TROPEOLIN OOO – H2O SYSTEM ACID-BASIC PROPERTIES IN THE PRESENCE OF HCl, HClO4, H2SO4 AND SO2H2O
Author(s) -
Р. Е. Хома,
А. А. Еннан,
T. S. Ben’kovs’ka,
E. Yu Bugova,
L. Т. Osadchiy,
E. M. Menchuk
Publication year - 2021
Publication title -
vìsnik odesʹkogo nacìonalʹnogo unìversitetu. hìmìâ
Language(s) - English
Resource type - Journals
eISSN - 2414-5963
pISSN - 2304-0947
DOI - 10.18524/2304-0947.2021.4(80).248292
Subject(s) - chemistry , hydrochloric acid , dissociation (chemistry) , sulfuric acid , base (topology) , ionic bonding , inorganic chemistry , acid–base reaction , ion , organic chemistry , mathematical analysis , mathematics
The influence of hydrochloric, chloric, sulfuric and sulfurous acids (HCl, HClO4, H2SO4 and SO2×H2O, respectively) on protolytic equilibria in the system monoethanolamine (MEA) – tropeolin OOO (TrOOO) – water (CMEA = 0.1 M; pH = 1.0 ÷ 9.5) was studied by pH-metric, spectrophotometric and colorimetric methods.The acid-base behavior of the HOCH2CH2NH2 – TrOOO – H2O system was investigated at CTrOOO = 1,12 ×10-4 М, CMEA = 1,0×10-4  ÷ 1,0 М (pH = 8,25 ÷ 12,05), T = 293 K. TrOOO in this system exists in two tautomeric forms due to acid-base dissociation of the 4-OH group and associates formed by H-bonding with MEA molecules. There is a direct ratio between the pH values ​​of solutions and the total color difference (ΔE76), in contrast to the specific color difference (SCD). The difference in the behavior of the H2SO4 – HOCH2CH2NH2 – TrOOO – H2O system from the systems with HCl and HClO4 is due to the fact that the interaction of the first acid with MEA (8,0 £ pH) forms an ionic associate [HOCH2СH2NH3]2(SO4), which is more stable than ionic pairs [[HOCH2СH2NH3](HSO4), [HOCH2СH2NH3](ClO4), [HOCH2СH2NH3]Cl и [HOCH2СH2NH3](O3S-C­10H6-N=N-C6H4-SO3)[H3NCH2СH2OH]. Acid-base dissociation constants in systems significantly depend on the structure and physicochemical parameters of the mineral acid. In the electronic absorption spectra of the SO2 – MEA – TrOOO – H2O system (pH £ 7,5), there is a pronounced isobestic point at 415 nm, due to the dynamic equilibrium between ion-molecular forms. The coincidence of the maxima on the curves ΔE76 = f(pH) and SCD = f(pH) for the indicated system, in contrast to others studied in this work, was stated. The difference between the spectrophotometric and colorimetric behavior of the SO2 – MEA – TrOOO – H2O system from behavior of the systems with HCl, HClO4, and H2SO4 systems is due to the sulfur(IV)oxyanions with an azo indicator redox interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here