z-logo
open-access-imgOpen Access
Development of flotation machine impeller on the base of additive technologies
Author(s) -
L. V. Sedykh,
P. V. Borisov,
A. N. Pashkov,
N. V. Gorbatyuk,
R. Yu. Surkova,
Zh. Kh. Mamatkulov
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2021-5-366-373
Subject(s) - impeller , modular design , process engineering , process (computing) , manufacturing engineering , machine tool , mechanical engineering , engineering , metalworking , computer science , operating system
The constant increase in the consumption of ferrous, non-ferrous, precious and rare metals in the national economy requires an increase in the efficiency of minerals mining and processing. One of the main methods of enrichment used in the technological process of processing various ores is foam flotation. The authors provide a brief description of this process and analysis of various designs of flotation machines. The article is devoted to the modernization of the aeration unit of flotation machines with “RIF” design. It is noted that the design of such machines effectively uses the modular principle of assembly aggregates, which allows you to upgrade individual unit, increasing the efficiency of the machine as a whole. The main part of this unit is an impeller – the most complex and fast – wearing part. The paper analyzes various designs of impellers and their manufacturing technologies. It is noted that in the existing designs of flotation machines, the impellers are made of steel. It is proposed to replace this material with polyurethane, which has become widely used as a structural material due to the emergence of additive technologies in the production of various parts. This material has a relatively low cost and has an increased resistance to wear. The article formulates the main requirements for the most important operations of the technological process of impeller manufacturing. For this purpose, a 3D model of the upgraded impeller design was developed in the SolidWorks 3D computer-aided design system. The authors propose an additive technology for layer-by-layer production of an impeller on a 3D printer using the Ultimaker Cura slicer program. For the manufacture of the proposed design of the impeller made of polyurethane, the production technology was developed by the method of layer-by-layer deposition method of Fused Deposition Modeling (FDM).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here