z-logo
open-access-imgOpen Access
Differences in Foliage Affect Performance of the Lappet Moth,Streblote panda: Implications for Species Fitness
Author(s) -
David de GonzaloCalvo,
José María Molina
Publication year - 2010
Publication title -
journal of insect science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.551
H-Index - 49
ISSN - 1536-2442
DOI - 10.1673/031.010.14137
Subject(s) - biology , lepidoptera genitalia , pistacia lentiscus , botany , instar , larva , pupa , fabaceae , horticulture , ecology , mediterranean climate
Implications for adults' fitness through the foliage effects of five different host plants on larval survival and performance of the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae), as well as their effect on species fitness were assayed. Larvae were reared under controlled laboratory conditions on excised foliage. Long-term developmental experiments were done using first instar larvae to adult emergence, and performance experiments were done using fifth instar larvae. Survival, development rates, and food use were measured. Foliar traits analysis indicated that leaves of different host plants varied, significantly affecting larvae performance and adult fitness. Pistacia lentiscus L. (Sapindales: Anacardiaceae), Arbutus unedo L. (Ericales: Ericaceae), and Retama sphaerocarpa (L.) Boiss. (Fabales: Fabaceae) were the most suitable hosts. Larvae fed on Tamarix gallica L. (Caryophyllales: Tamaricaceae) and Spartium junceum L. (Fabales: Fabaceae) showed the lowest survival, rates of development and pupal and adult weight. In general, S. panda showed a relatively high capacity to buffer low food quality, by reducing developmental rates and larvae development thereby reaching the minimum pupal weight that ensures adult survival. Less suitable plants seem to have indirect effects on adult fitness, producing smaller adults that could disperse to other habitats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom