z-logo
open-access-imgOpen Access
Predicting Livelihood Indicators from Community-Generated Street-Level Imagery
Author(s) -
Jihyeon Lee,
Dylan Grosz,
Burak Uzkent,
Sicheng Zeng,
Marshall Burke,
David B. Lobell,
Stefano Ermon
Publication year - 2021
Publication title -
proceedings of the aaai conference on artificial intelligence
Language(s) - Uncategorized
Resource type - Journals
eISSN - 2374-3468
pISSN - 2159-5399
DOI - 10.1609/aaai.v35i1.16101
Subject(s) - livelihood , computer science , scalability , poverty , data science , population , scale (ratio) , graph , geography , data mining , database , cartography , political science , demography , archaeology , theoretical computer science , sociology , law , agriculture

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom