Open Access
Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods
Author(s) -
Luke D. Einoder,
Darren Southwell,
José J. LahozMonfort,
Graeme Gillespie,
A. Fisher,
Brendan A. Wintle
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0203304
Subject(s) - occupancy , species richness , nocturnal , ecology , habitat , sampling (signal processing) , monotreme , biology , geography , environmental science , filter (signal processing) , computer science , computer vision , taxonomy (biology) , systematics
Understanding where species occur and how difficult they are to detect during surveys is crucial for designing and evaluating monitoring programs, and has broader applications for conservation planning and management. In this study, we modelled occupancy and the effectiveness of six sampling methods at detecting vertebrates across the Top End of northern Australia. We fitted occupancy-detection models to 136 species (83 birds, 33 reptiles, 20 mammals) of 242 recorded during surveys of 333 sites in eight conservation reserves between 2011 and 2016. For modelled species, mean occupancy was highly variable: birds and reptiles ranged from 0.01–0.81 and 0.01–0.49, respectively, whereas mammal occupancy was lower, ranging from 0.02–0.30. Of the 11 environmental covariates considered as potential predictors of occupancy, topographic ruggedness, elevation, maximum temperature, and fire frequency were retained more readily in the top models. Using these models, we predicted species occupancy across the Top End of northern Australia (293,017 km 2 ) and generated species richness maps for each species group. For mammals and reptiles, high richness was associated with rugged terrain, while bird richness was highest in coastal lowland woodlands. On average, detectability of diurnal birds was higher per day of surveys (0.33 ± 0.09) compared with nocturnal birds per night of spotlighting (0.13 ± 0.06). Detectability of reptiles was similar per day/night of pit trapping (0.30 ± 0.09) as per night of spotlighting (0.29 ± 0.11). On average, mammals were highly detectable using motion-sensor cameras for a week (0.36 ± 0.06), with exception of smaller-bodied species. One night of Elliott trapping (0.20 ± 0.06) and spotlighting (0.19 ± 0.06) was more effective at detecting mammals than cage (0.08 ± 0.03) and pit trapping (0.05 ± 0.04). Our estimates of species occupancy and detectability will help inform decisions about how best to redesign a long-running vertebrate monitoring program in the Top End of northern Australia.