Open Access
Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF
Author(s) -
Samson Hagos,
Ruby Leung,
Sara A. Rauscher,
Todd D. Ringler
Publication year - 2013
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-12-00338.1
Subject(s) - weather research and forecasting model , context (archaeology) , precipitation , environmental science , atmospheric model , climatology , meteorology , geology , physics , paleontology
This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high-resolution regional climate modeling. The global variable-resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited-area model, Weather Research and Forecasting Model (WRF), are compared in an idealized aquaplanet context. For MPAS-A, simulations have been performed with a quasi-uniform-resolution global domain at coarse (1°) and high (0.25°) resolution, and a variable-resolution domain with a high-resolution region at 0.25° configured inside a coarse-resolution global domain at 1° resolution. Similarly, WRF has been configured to run on a coarse (1°) and high (0.25°) tropical channel domain as well as a nested domain with a high-resolution region at 0.25° nested two-way inside the coarse-resolution (1°) tropical channel. The variable-resolution or nested simulations are compared against the high-resolution simulations. Both models respond to increased resolution with enhanced precipitation and significant reduction in the ratio of convective to nonconvective precipitation. The limited-area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker-like circulations and standing Rossby wave signals. Within the high-resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, the propagation characteristics of equatorial waves are not significantly affected by the variations in resolution.