z-logo
open-access-imgOpen Access
Tear 1 H Nuclear Magnetic Resonance-Based Metabolomics Application to the Molecular Diagnosis of Aqueous Tear Deficiency and Meibomian Gland Dysfunction
Author(s) -
Benítez del Castillo José Manuel,
Pinazo-Duran Maria Dolores,
Sanz-González Silvia M.,
Muñoz-Hernández Ana M.,
Garcia-Medina Jose J.,
Zanón-Moreno Vicente
Publication year - 2020
Publication title -
ophthalmic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.893
H-Index - 54
eISSN - 1423-0259
pISSN - 0030-3747
DOI - 10.1159/000510211
Subject(s) - research article
Purpose: Meibomian gland dysfunction (MGD) is a major cause of signs and symptoms related to dry eyes (DE) and eyelid inflammation. We investigated the composition of human tears by metabolomic approaches in patients with aqueous tear deficiency and MGD. Methods: Participants in this prospective, case-control pilot study were split into patients with aqueous tear deficiency and MGD (DE-MGD [ n = 15]) and healthy controls (CG; n = 20). Personal interviews, ocular surface disease index (OSDI), and ophthalmic examinations were performed. Reflex tears collected by capillarity were processed to 1H nuclear magnetic resonance (NMR) spectroscopy and quantitative data analysis to identify molecules by spectra comparison to library entries of purified standards and/or unknown entities. Statistical analyses were made by the SPSS 22.0 program. Results: Chemometric analysis and 1H NMR spectra comparison revealed the presence of 60 metabolites in tears. Differentiating features were evident in the NMR spectra of the 2 clinical groups, characterized by significant upregulation of phenylalanine, glycerol, and isoleucine, and downregulation of glycoproteins, leucine, and –CH3 lipids, as compared to the CG. The 1H NMR metabolomic analyses of human tears confirmed the applicability of this platform with high predictive accuracy/reliability. Conclusions: Our key distinctive findings support that DE-MGD induces tear metabolomics profile changes. Metabolites contributing to a higher separation from the CG can presumably be used, in the foreseeable future, as DE-MGD biomarkers for better managing the diagnosis and therapy of this disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here