Open Access
Collectin Kidney 1 Plays an Important Role in Innate Immunity against <b><i>Streptococcus pneumoniae</i></b> Infection
Author(s) -
Insu Hwang,
Kenichiro Mori,
Katsuki Ohtani,
Y. Matsuda,
Nitai Roy,
YounUck Kim,
Yasuhiko Suzuki,
Nobutaka Wakamiya
Publication year - 2017
Publication title -
journal of innate immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000453316
Subject(s) - collectin , streptococcus pneumoniae , innate immune system , complement system , phagocytosis , biology , inflammation , in vivo , immunology , alternative complement pathway , microbiology and biotechnology , immune system , chemistry , antibiotics
Collectins are C-type lectins that are involved in innate immunity as pattern recognition molecules. Recently, collectin kidney 1 (CL-K1) has been discovered, and in vitro studies have shown that CL-K1 binds to microbes and activates the lectin complement pathway. However, in vivo functions of CL-K1 against microbes have not been elucidated. To investigate the biological functions of CL-K1, we generated CL-K1 knockout (CL-K1-/-) mice and then performed a Streptococcus pneumoniae infection analysis. First, we found that recombinant human CL-K1 bound to S. pneumoniae in a calcium-dependent manner, and induced complement activation. CL-K1-/- mice sera formed less C3 deposition on S. pneumoniae. Furthermore, immunofluorescence analysis in the wild-type (WT) mice demonstrated that CL-K1 and C3 were localized on S. pneumoniae in infected lungs. CL-K1-/- mice revealed decreased phagocytosis of S. pneumoniae. Consequently, less S. pneumoniae clearance was observed in their lungs. CL-K1-/- mice showed severe pulmonary inflammation and weight loss in comparison with WT mice. Finally, the decreased clearance and severe pulmonary inflammation caused by S. pneumoniae infection might cause higher CL-K1-/- mice lethality. Our results suggest that CL-K1 might play an important role in host protection against S. pneumoniae infection through the activation of the lectin complement pathway.