z-logo
open-access-imgOpen Access
An Intelligent Optimization Strategy Based on Deep Reinforcement Learning for Step Counting
Author(s) -
Zhoubao Sun,
Pengfei Chen,
Xiaodong Zhang
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/9536309
Subject(s) - computer science , reinforcement learning , noise (video) , serialization , filter (signal processing) , artificial intelligence , machine learning , optimization problem , algorithm , computer vision , image (mathematics) , operating system
With the popularity of Internet of things technology and intelligent devices, the application prospect of accurate step counting has gained more and more attention. To solve the problems that the existing algorithms use threshold to filter noise, and the parameters cannot be updated in time, an intelligent optimization strategy based on deep reinforcement learning is proposed. In this study, the counting problem is transformed into a serialization decision optimization. This study integrates the noise recognition and the user feedback to update parameters. The end-to-end processing is direct, which alleviates the inaccuracy of step counting in the follow-up step counting module caused by the inaccuracy of noise filtering in the two-stage processing and makes the model parameters continuously updated. Finally, the experimental results show that the proposed model achieves superior performance to existing approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom