z-logo
open-access-imgOpen Access
Weighted Reconstruction and Improved Eigenclass Combination Method for the Detection of Bearing Faults
Author(s) -
Zhengyu Du,
Jie Ma,
Chao Ma,
Min Huang,
Weiwei Sun
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5503107
Subject(s) - hilbert–huang transform , pattern recognition (psychology) , computer science , bearing (navigation) , artificial intelligence , algorithm , dimensionality reduction , classifier (uml) , fault (geology) , support vector machine , filter (signal processing) , computer vision , seismology , geology
Aiming at the difficulty of extracting and classifying early bearing faults, a fault diagnosis method based on weighted average time-varying filtering empirical mode decomposition and improved eigenclass is proposed in this paper. Firstly, the bearing fault signal is decomposed into a series of intrinsic mode functions by the signal decomposition method, and the amplitude of the component is modulated by the weighted average method to enhance the fault impulse component. Then, the fractional Fourier transform is used to filter the reconstructed signal. Regarding classification issues, the eigenclass classifier is optimized by the IDE method that can be used for feature dimensionality reduction. Finally, the optimal features are selected and input into the IDE-EigenClass model. The experimental results show that the bearing fault diagnosis method proposed in this paper has higher accuracy and stability than the traditional PNN, SVM, BP, and other methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom