z-logo
open-access-imgOpen Access
Distal Placement of an End-to-Side Bypass Graft Anastomosis: A 3D Computational Study
Author(s) -
John Di Cicco,
A. O. Demuren
Publication year - 2012
Publication title -
journal of engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.244
H-Index - 20
eISSN - 2314-4912
pISSN - 2314-4904
DOI - 10.1155/2013/185823
Subject(s) - anastomosis , constriction , reynolds number , mechanics , turbulence , newtonian fluid , materials science , surgery , medicine , physics , cardiology
A three-dimensional (3D) computational fluid dynamics study of shear rates around distal end-to-side anastomoses has been conducted. Three 51% and three 75% cross-sectional area-reduced 6 mm cylinders were modeled each with a bypass cylinder attached at a 30-degree angle at different placements distal to the constriction. Steady, incompressible, Newtonian blood flow was assumed, and the full Reynolds-averaged Navier-Stokes equations, turbulent kinetic energy, and specific dissipation rate equations were solved on a locally structured multiblock mesh with hexahedral elements. Consequently, distal placement of an end-to-side bypass graft anastomosis was found to have an influence on the shear rate magnitudes. For the 75% constriction, closer placements produced lower shear rates near the anastomosis. Hence, there is potential for new plaque formation and graft failure

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom