Open Access
Comparison of an enzyme-linked immunosorbent assay for quantitation of rotavirus antibodies with complement fixation in an epidemiological survey
Author(s) -
Lorraineh . Ghose,
Roger D. Schnagl,
Ian Holmes
Publication year - 1978
Publication title -
journal of clinical microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.349
H-Index - 255
eISSN - 1070-633X
pISSN - 0095-1137
DOI - 10.1128/jcm.8.3.268-276.1978
Subject(s) - complement fixation test , rotavirus , antibody , virology , antigen , biology , titer , reoviridae , antiserum , virus , serology , immunology
The development of a micro-scale enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase as the marker enzyme for the detection and measurement of human rotavirus antibodies is described. A semipurified preparation of the serologically related simian agent, SA-11 virus, was used as the antigen. Test sera were reacted with antigen-sensitized wells in disposable poly-vinyl microplates. Any attached antibody was detected by the addition of peroxidase-labeled anti-species immunoglobulin (conjugate) followed by assay of the enzyme reaction with its substrate, hydrogen peroxide plus 5-aminosalicylic acid. This micro-ELISA was compared with complement fixation in a seroepidemiological study of the age prevalence of rotavirus antibody in Aboriginal and European populations living in the same outback area in Australia. The ELISA (results read with the naked eye) proved to be approximately 16 times more sensitive than complement fixation. Of Aborigines, 71% had rotavirus complement-fixing antibody, as compared to 45% of Europeans. By ELISA 100% of both populations had rotavirus antibodies. Mean antibody titers in the different age groups were higher in Aborigines than in Europeans. Antibody levels rose steeply throughout the first 20 years of life, remained high during the next 20 years, then increased again at least up to the age of 60 years. The micro-ELISA was practical, simple to perform, and more suitable than complement fixation for large seroepidemiological rotavirus studies. It also has potential for serodiagnosis of the disease, both in the laboratory and in the field.