z-logo
open-access-imgOpen Access
Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH
Author(s) -
Jörgen Hansen,
Hélène Cherest,
Morten C. KiellandBrandt
Publication year - 1994
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.176.19.6050-6058.1994
Subject(s) - biology , sulfite reductase , saccharomyces cerevisiae , biochemistry , flavoprotein , saccharomyces , flavin mononucleotide , 7 dehydrocholesterol reductase , flavin adenine dinucleotide , reductase , open reading frame , peptide sequence , gene , flavin group , enzyme , cofactor
The yeast assimilatory sulfate reductase is a complex enzyme that is responsible for conversion of sulfite into sulfide. To obtain information on the nature of this enzyme, we isolated and sequenced the MET10 gene of Saccharomyces cerevisiae and a divergent MET10 allele from Saccharomyces carlsbergensis. The polypeptides deduced from the identically sized open reading frames (1,035 amino acids) of both MET10 genes have molecular masses of around 115 kDa and are 88% identical to each other. The transcript of S. cerevisiae MET10 has a size comparable to that of the open reading frame and is transcriptionally repressed by methionine in a way similar to that seen for other MET genes of S. cerevisiae. Distinct homology was found between the putative MET10-encoded polypeptide and flavin-interacting parts of the sulfite reductase flavoprotein subunit (encoded by cysJ) from Escherichia coli and several other flavoproteins. A significant N-terminal homology to pyruvate flavodoxin oxidoreductase (encoded by nifJ) from Klebsiella pneumoniae, together with a lack of obvious flavin mononucleotide-binding motifs in the MET10 deduced amino acid sequence, suggests that the yeast assimilatory sulfite reductase is a distinct type of sulfite reductase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here