Premium
Red muscle proportions and enzyme activities in deep‐sea demersal fishes
Author(s) -
Drazen J. C.,
Dugan B.,
Friedman J. R.
Publication year - 2013
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/jfb.12268
Subject(s) - biology , demersal zone , demersal fish , deep sea , benthic zone , fishery , zoology , ecology , pelagic zone , fish <actinopterygii>
Owing to the paucity of data on the red muscle of deep‐sea fishes, the goal of this study was to determine the proportions of red muscle in demersal fishes and its enzymatic activities to characterize how routine swimming abilities change with depths of occurrence. Cross sectional analysis of the trunk musculature was used to evaluate the proportion of red muscle in 38 species of Californian demersal fishes living at depths between 100 and 3000 m. The activity of metabolic enzymes was also assayed in a sub‐set of 18 species. Benthic fishes had lower proportions of red muscle and lower metabolic enzyme activities than benthopelagic species. Mean proportion of red muscle declined significantly with depth with the greatest range of values in shallow waters and species with low proportions found at all depths. This suggested that while sedentary species occur at all depths, the most active species occur in shallow waters. Citrate synthase activity declined significantly with depth across all species, indicating that the mass‐specific metabolic capacity of red muscle is lower in deep‐sea species. These patterns may be explained by coupling of red and white muscle physiologies, a decrease in physical energy of the environment with depth or by the prevalence of anguilliform body forms and swimming modes in deep‐living species.