z-logo
Premium
Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates
Author(s) -
Kumar Ujjwal,
Saier Milton H.
Publication year - 2014
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/jeu.12156
Subject(s) - biology , atp binding cassette transporter , integral membrane protein , transporter , membrane transport protein , tetrahymena , transport protein , genome , membrane protein , biochemistry , membrane transport , paramecium , gene , genetics , membrane
Abstract Integral membrane transport proteins homologous to those found in the Transporter Classification Database ( TCDB ; www.tcdb.org ) were identified and bioinformatically characterized by transporter class, family, and substrate specificity in three ciliates, Paramecium tetraurelia (Para), Tetrahymena thermophila (Tetra), and Ichthyophthirius multifiliis (Ich). In these three organisms, 1,326 of 39,600 proteins (3.4%), 1,017 of 24,800 proteins (4.2%), and 504 out of 8,100 proteins (6.2%) integral membrane transport proteins were identified, respectively. Thus, an inverse relationship was observed between the % transporters identified and the number of total proteins per genome reported. This surprising observation provides insight into the evolutionary process, giving rise to genome reduction following whole genome duplication (as in the case of Para) or during pathogenic association with a host organism (Ich). Of these transport proteins in Para and Tetra, about 41% were channels (more than any other type of organism studied), 31% were secondary carriers (fewer than most eukaryotes) and 26% were primary active transporters, mostly ATP ‐hydrolysis driven (more than most other eukaryotes). In Ich, the number of channels was selectively reduced by 66%, relative to Para and Tetra. Para has four times more inorganic anion transporters than Tetra, and Ich has nonselectively lost most of these. Tetra and Ich preferentially transport sugars and monocarboxylates while Para prefers di‐ and tricarboxylates. These observations serve to characterize the transport proteins of these related ciliates, providing insight into their nutrition and metabolism.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here