Premium
Fluctuating selection and its (elusive) evolutionary consequences in a wild rodent population
Author(s) -
Bonnet T.,
Postma E.
Publication year - 2018
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.13246
Subject(s) - selection (genetic algorithm) , biology , evolutionary biology , genetic drift , population , variation (astronomy) , directional selection , natural selection , genetic variation , genetics , machine learning , computer science , demography , physics , sociology , astrophysics , gene
Abstract Temporal fluctuations in the strength and direction of selection are often proposed as a mechanism that slows down evolution, both over geological and contemporary timescales. Both the prevalence of fluctuating selection and its relevance for evolutionary dynamics remain poorly understood however, especially on contemporary timescales: unbiased empirical estimates of variation in selection are scarce, and the question of how much of the variation in selection translates into variation in genetic change has largely been ignored. Using long‐term individual‐based data for a wild rodent population, we quantify the magnitude of fluctuating selection on body size. Subsequently, we estimate the evolutionary dynamics of size and test for a link between fluctuating selection and evolution. We show that, over the past 11 years, phenotypic selection on body size has fluctuated significantly. However, the strength and direction of genetic change have remained largely constant over the study period; that is, the rate of genetic change was similar in years where selection favoured heavier vs. lighter individuals. This result suggests that over shorter timescales, fluctuating selection does not necessarily translate into fluctuating evolution. Importantly however, individual‐based simulations show that the correlation between fluctuating selection and fluctuating evolution can be obscured by the effect of drift, and that substantially more data are required for a precise and accurate estimate of this correlation. We identify new challenges in measuring the coupling between selection and evolution, and provide methods and guidelines to overcome them.