Premium
Allele‐specific genetic interactions between Mitf and Kit affect melanocyte development
Author(s) -
Wen Bin,
Chen Yu,
Li Huirong,
Wang Jing,
Shen Jie,
Ma Aobo,
Qu Jia,
Bismuth Keren,
Debbache Julien,
Arnheiter Heinz,
Hou Ling
Publication year - 2010
Publication title -
pigment cell and melanoma research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.618
H-Index - 105
eISSN - 1755-148X
pISSN - 1755-1471
DOI - 10.1111/j.1755-148x.2010.00699.x
Subject(s) - microphthalmia associated transcription factor , biology , allele , genetics , microbiology and biotechnology , transcription factor , cancer research , gene
Summary The tyrosine kinase receptor KIT and the transcription factor MITF, each required for melanocyte development, have been shown to interact functionally both in vitro and in vivo. In vitro, KIT signaling leads to MITF phosphorylation, affecting MITF activity and stability. In vivo, the presence of the Mitf Mi‐wh allele exacerbates the spotting phenotype associated with heterozygosity for Kit mutations. Here, we show that among a series of other Mitf alleles, only the recessive Mitf mi‐bws mimics the effect of Mitf Mi‐wh on Kit . Intriguingly, Mitf mi‐bws is characterized by a splice defect that leads to a reduction of RNAs containing MITF exon 2B which encodes serine‐73, a serine phosphorylated upon KIT signaling. Nevertheless, other Mitf alleles that generally affect Mitf RNA levels, or carry a serine‐73‐to‐alanine mutation that specifically reduces exon 2B‐containing RNAs, do not show similar interactions with Kit in vivo. We conclude that the recessive Mitf mi‐bws is a complex allele that can display a semi‐dominant effect when present in a Kit ‐sensitized background. We suggest that human disease variability may equally be due to complex, allele‐specific interactions between different genes.