Premium
IMPLEMENTATION OF BIORETENTION SYSTEMS: A WISCONSIN CASE STUDY 1
Author(s) -
MorzariaLuna Hem Nalini,
Schaepe Karen S.,
Cutforth Laurence B.,
Veltman Rachel L.
Publication year - 2004
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2004.tb01066.x
Subject(s) - bioretention , swale , stormwater , environmental science , surface runoff , water quality , low impact development , storm , hydrology (agriculture) , environmental planning , infiltration (hvac) , subdivision , water resource management , environmental resource management , stormwater management , engineering , civil engineering , meteorology , geography , ecology , geotechnical engineering , biology
ABSTRACT: The implementation of various bioretention systems was analyzed, including rain gardens, vegetated swales, trenches, and infiltration basins in the St. Francis subdivision, Cross Plains, Wisconsin. Through the examination of archival data and interviews with key participants, it was found that although regulatory and political pressures encouraged the inclusion of bioretention, current standards for storm water management prevailed. The developers had to meet both existing requirements and anticipated rules requiring infiltration. As a result, bioretention systems simply supplemented, rather than replaced, traditional storm water practices. The confusion surrounding dual standards contributed to substantial delays in the negotiations among relevant stakeholders in the watershed. It is concluded that the St. Francis subdivision serves as both a cautionary tale and a bioretention success story. As a caution, this situation demonstrates the need for careful review and refinement of existing storm water ordinances to incorporate water quality improvement technologies, such as bioretention. The demonstrated success of the St. Francis development, however, is that it became a positive prototype for best management storm water practices elsewhere in the region. In addition, the water quality monitoring data from the site has contributed to development of a new county ordinance, the first in Wisconsin to address both quantity and quality of storm water runoff.