Open Access
Role of different negative pressure values in the process of infected wounds treated by vacuum‐assisted closure: an experimental study
Author(s) -
Zhou Min,
Yu Aixi,
Wu Gang,
Xia Chengyan,
Hu Xiang,
Qi Baiwen
Publication year - 2013
Publication title -
international wound journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.867
H-Index - 63
eISSN - 1742-481X
pISSN - 1742-4801
DOI - 10.1111/j.1742-481x.2012.01008.x
Subject(s) - medicine , negative pressure wound therapy , trichrome stain , immunohistochemistry , masson's trichrome stain , surgery , h&e stain , wound healing , stain , negative control , vascular endothelial growth factor , pathology , staining , vegf receptors , traditional medicine , alternative medicine
Vacuum‐assisted closure (VAC) device is widely used to treat infected wounds in clinical work. Although the effect of VAC with different negative pressure values is well established, whether different negative pressures could result in varying modulation of wound relative cytokines was not clear. We hypothesise that instead of the highest negative pressure value the suitable value for VAC is the one which is the most effective on regulating wound relative cytokines. Infected wounds created on pigs' back were used to investigate the effects of varying negative pressure values of VAC devices. Wounds were treated with VAC of different negative pressure values or moist gauze, which was set as control. The VAC foam, semiocclusive dresses and moist gauze were changed on days 3, 5, 7 and 9 after wounds were created. When changing dressings, tissues from wounds were harvested for bacteria count and histology examination including Masson's trichrome stain and immunohistochemistry for microvessels. Western blot was carried out to test the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Results showed that on days 3 and 5 the number of bacteria in wounds treated by VAC with 75, 150, 225 and 300 mmHg was significantly decreased compared with that in wounds treated by gauze and 0 mmHg pressure value. However, there was no difference in wounds treated with negative pressure values of 75 , 150, 225 and 300 mmHg at any time spot. Immunohistochemistry showed that more microvessels were generated in wounds treated by VAC using 75 and 150 mmHg negative pressure comparing with that using 225 and 300 mmHg on days 3 and 5. However this difference vanished on days 7 and 9. Morphological evaluation by Masson's trichrome staining showed increased collagen deposition in VAC of 75 and 150 mmHg compared with that in VAC of 225 and 300 mmHg. Western blot showed that the expression of VEGF and bFGF significantly increased when the wounds treated with 75 and 150 mmHg negative pressure values compared with the wounds treated with 225 and 300 mmHg on day 5. Treatment using VAC with different negative pressure values more than 75 mmHg has similar efficiency on reducing bacteria in the infected wound. VAC with negative pressure values of 75 and 150 mmHg promote wound healing more quickly than other pressure values. Moreover, comparing with vigorous negative pressure, relatively moderate pressures contribute to wound healing via accelerated granulation growth, increased angiogenic factor production and improved collagen fibre deposition. Further study of this model may show other molecular mechanisms.