z-logo
Premium
Invasion of Babesia microti into Epithelial Cells of the Tick Gut 1
Author(s) -
RUDZINSKA MARIA A.,
LEWENGRUB SONDRA,
SPIELMAN ANDREW,
PIESMAN JOSEPH
Publication year - 1983
Publication title -
the journal of protozoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 0022-3921
DOI - 10.1111/j.1550-7408.1983.tb02927.x
Subject(s) - babesia , babesiosis , tick , biology , virology
ABSTRACT During feeding a peritrophic membrane (PM) is formed in the gut of the tick Ixodes dammini , dividing the lumen of the gut into an ecto‐ and endoperitrophic space. Babesia and all food particles ingested with the blood meal by the tick are retained in the endoperitrophic space, the lumen proper. Only Babesia equipped with a highly specialized organelle, the arrowhead, are able to pass the PM and enter the ectoperitrophic compartment. During the crossing of the PM the arrowhead loses its density, suggesting that enzymes released from it dissolve the polymers in the PM, making passage of the parasite through this barrier possible. In the ectoperitrophic space the arrowhead of Babesia touches the epithelial cell. At the point of contact the membrane of the host cell starts to invaginate, and simultaneously the arrowhead's fine structure loses its highly organized pattern. The growing host membrane encircles the parasite and the arrowhead diminishes progressively in size. When the piroplasm is inside the host cell, the arrowhead can no longer be found. During invasion the host membrane often touches the parasite's plasma membrane at the site of a coiled structure, and the host membrane becomes ruptured and the nearby host cytoplasm appears to be lysed. Babesia inside the host cell is covered solely by its own plasma membrane; the invaginated host membrane is missing. It is postulated that the latter disintegrates during invasion by the parasite through the action of enzymes from the coiled structure. The parasite is surrounded by a halo of homogeneous material deriving most probably from the lysed host cytoplasm.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here