Premium
Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations
Author(s) -
Cai Baoping,
Liu Yonghong,
Liu Zengkai,
Tian Xiaojie,
Zhang Yanzhen,
Ji Renjie
Publication year - 2013
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/j.1539-6924.2012.01918.x
Subject(s) - subsea , bayesian network , correctness , bayesian probability , variable order bayesian network , computer science , chart , reliability engineering , flow chart , software , data mining , engineering , bayesian inference , artificial intelligence , algorithm , marine engineering , control engineering , statistics , mathematics , programming language
This article proposes a methodology for the application of Bayesian networks in conducting quantitative risk assessment of operations in offshore oil and gas industry. The method involves translating a flow chart of operations into the Bayesian network directly. The proposed methodology consists of five steps. First, the flow chart is translated into a Bayesian network. Second, the influencing factors of the network nodes are classified. Third, the Bayesian network for each factor is established. Fourth, the entire Bayesian network model is established. Lastly, the Bayesian network model is analyzed. Subsequently, five categories of influencing factors, namely, human, hardware, software, mechanical, and hydraulic, are modeled and then added to the main Bayesian network. The methodology is demonstrated through the evaluation of a case study that shows the probability of failure on demand in closing subsea ram blowout preventer operations. The results show that mechanical and hydraulic factors have the most important effects on operation safety. Software and hardware factors have almost no influence, whereas human factors are in between. The results of the sensitivity analysis agree with the findings of the quantitative analysis. The three‐axiom‐based analysis partially validates the correctness and rationality of the proposed Bayesian network model.