Premium
An AHP/DEA methodology for ranking decision making units
Author(s) -
SinuanyStern Z.,
Mehrez A.,
Hadad Y.
Publication year - 2000
Publication title -
international transactions in operational research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.032
H-Index - 52
eISSN - 1475-3995
pISSN - 0969-6016
DOI - 10.1111/j.1475-3995.2000.tb00189.x
Subject(s) - analytic hierarchy process , ranking (information retrieval) , computer science , operations research , data envelopment analysis , mathematical optimization , artificial intelligence , mathematics
Abstract This paper presents a two‐stage model for fully ranking organizational units where each unit has multiple inputs and outputs. In the first stage, the Data Envelopment Analysis (DEA) is run for each pair of units separately. In the second stage, the pairwise evaluation matrix generated in the first stage is utilized to rank scale the units via the Analytical Hierarchical Process (AHP). The consistency of this AHP/DEA evaluation can be tested statistically. Its goodness of fit with the DEA classification (to efficient/inefficient) can also be tested using non‐parametric tests. Both DEA and AHP are commonly used in practice. Both have limitations. The hybrid model AHP/DEA takes the best of both models, by avoiding the pitfalls of each. The nonaxiomatic utility theory limitations of AHP are irrelevant here: since we are working with given inputs and outputs of units, no subjective assessment of a decision maker evaluation is involved. AHP/DEA ranking does not replace the DEA classification model, rather it furthers the analysis by providing full ranking in the DEA context for all units, efficient and inefficient.