z-logo
Premium
Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow
Author(s) -
Schulte Paul J.
Publication year - 2012
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/j.1469-8137.2011.03986.x
Subject(s) - xylem , torus , flow (mathematics) , morphology (biology) , materials science , geology , mechanics , geometry , physics , botany , biology , mathematics , paleontology
Summary• The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. • Models solving the Navier–Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce ( Picea mariana ) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. • Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. • Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here