Premium
Evolution of cranial development and the role of neural crest: insights from amphibians
Author(s) -
Hanken James,
Gross Joshua B.
Publication year - 2005
Publication title -
journal of anatomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 118
eISSN - 1469-7580
pISSN - 0021-8782
DOI - 10.1111/j.1469-7580.2005.00481.x
Subject(s) - vertebrate , biology , neural crest , cranial neural crest , skull , evolutionary biology , ontogeny , evolutionary developmental biology , tetrapod (structure) , crest , amphibian , anatomy , zoology , ecology , embryo , paleontology , genetics , physics , quantum mechanics , gene
Abstract Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog.