z-logo
Premium
Solitary Waves and Their Linear Stability in Nonlinear Lattices
Author(s) -
Hwang G.,
Akylas T. R.,
Yang J.
Publication year - 2012
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/j.1467-9590.2011.00538.x
Subject(s) - nonlinear system , lattice (music) , mathematical analysis , mathematics , eigenvalues and eigenvectors , countable set , linear stability , physics , quantum mechanics , pure mathematics , acoustics
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, which span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, hinge upon a certain recurrence relation which contains information beyond all orders of the usual two‐scale perturbation expansion. It follows that only two such positions are permissible, and of those two solitary waves, one is linearly stable and the other unstable. For a cosine lattice, in particular, the two possible solitary waves are centered at a maximum or minimum of the lattice, with the former being stable, and the analytical predictions for the associated linear stability eigenvalues are in excellent agreement with numerical results. Furthermore, a countable set of multi‐solitary‐wave bound states are constructed analytically. In spite of rather different physical settings, the exponential asymptotics approach followed here is strikingly similar to that taken in earlier studies of solitary wavepackets involving a periodic carrier and a slowly varying envelope, which underscores the general value of this procedure for treating multiscale solitary‐wave problems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here