z-logo
open-access-imgOpen Access
Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways
Author(s) -
Coers Jörn,
Vance Russell E.,
Fontana Mary F.,
Dietrich William F.
Publication year - 2007
Publication title -
cellular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.542
H-Index - 138
eISSN - 1462-5822
pISSN - 1462-5814
DOI - 10.1111/j.1462-5822.2007.00963.x
Subject(s) - legionella pneumophila , biology , microbiology and biotechnology , intracellular , legionella , bacteria , genetics
Summary Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila , whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)‐α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF‐α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here