Open Access
Phosphoregulation on mitochondria: Integration of cell and organelle responses
Author(s) -
Lucero Maribel,
Suarez Ana E.,
Chambers Jeremy W.
Publication year - 2019
Publication title -
cns neuroscience and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 69
eISSN - 1755-5949
pISSN - 1755-5930
DOI - 10.1111/cns.13141
Subject(s) - microbiology and biotechnology , biology , signal transduction , protein kinase a , kinase , scaffold protein , phosphorylation , ask1 , protein phosphorylation , phosphatase , c raf , mitogen activated protein kinase kinase
Abstract Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c‐Jun N‐terminal kinase (JNK), protein kinase A (PKA), PTEN‐induced kinase‐1 (PINK1), and AMP‐dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria‐cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen‐activated protein kinase phosphatase‐1 (MKP‐1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A‐kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5—SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein‐protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.